

Qal Alluvial deposits, undifferentiated (Hoiocene)—Unconsolidated, heterogeneous, moderately sorted silt and sand containing discontinuous lenses of clay and silty clay. Locally includes large amounts of gravel. May include deposits equivalent to both younger (Qyf) and older (Qof) flood-plain deposits in areas where these were not differentiated. Thiskness highly principle; may be more than 100 ft thickness to the containing the containi

differentiated. Thickness highly variable; may be more than 100 ft thick near coast

about Basin deposits (Holocene)—Unconsolidated, plastic, silty clay and clay rich in
organic material. Locally contain interbedded thin layers of silt and silty sand.

Deposited in a variety of environments including estuaries, lagoons, marsh-filled sloughs, flood basins, and lakes. Thickness highly variable; may be as much as 90 ft thick underlying some sloughs

Qbs Beach sand (Holocene)—Unconsolidated well-sorted sand. Local layers of pebbles and cobbles. Thin discontinuous lenses of silt relatively common in back-beach areas. Thickness variable, in part due to seasonal changes in wave energy; commonly less than 20 ft thick. May interfinger with either well-sorted dune sand or, where adjacent to coastal cliff, poorly-sorted colluvial deposits. Iron-and magnesium-rich heavy minerals locally from placers as much as 2 ft thick

Qt Terrace deposits, undifferentiated (Pleistocene)—Weakly consolidated to semiconsolidated heterogeneous deposits of moderately to poorly sorted silt, silty clay, sand, and gravel. Mostly deposited in a fluvial environment. Thickness highly variable; locally as much as 60 ft thick. Some of the deposits are relatively well indurated in upper 10 ft of weathered zone

Purisima Formation (Pliocene and upper Milocene)—Very thick bedded yellowish-gray tuffaceous and diatomaceous siltstone containing thick interbeds of bluish-gray, semifriable, fine-grained andesitic sancistone. As shown, includes Santa Cruz Mudstone east of Scotts Valley and north of Santa Cruz. Thickness approximately 3,000 ft in the Corralitos Canyon area

Predominantly massive sandstone

Santa Cruz Mudstone (upper Miocene)—Medium-to thick-bedded and faintly laminated, blocky-weathering, pale-yellowish-brown siliceous organic mudstone. As shown, includes Santa Margarita Sandstone along Glenwood syncline. Thickness at least 8,900 ft in the Texas Company Poletti well near Waddell Creek (Clark, 1981,

Santa Margarita Sandstone (upper Miocene)—Very thick bedded to massive thickly crossbedded yellowish-gray to white friable granular medium-to fine-grained arkosic sandstone; locally calcareous and locally bituminous. Thickness 430 ft along Scotts Valley syncline (Clark, 1981, p. 25)

Tm | Monterey Formation (middle Miocene)—Medium-to thick-bedded and laminated olive-gray to light-gray semisiliceous organic mudstone and sandy siltstone. Includes a few thick dolomite interbeds. Thickness about 2,675 ft on north limb of Scotts Valley syncline (Clark, 1981, p. 21)

GEOLOGIC SITE MAP BY EARL E. BRABB 1987
THE LANDS OF KRASSOW, McFADDEN & BOSTWICK
OCEAN STREET EXTENSION
APN 008-044-01 & 02
SANTA CRUZ COUNTY, CALIFORNIA

SCALE 1.62,500

BILL S.

HARO, KASUNICH & ASSOCIATES, INC.
GEOTECHNICAL AND COASTAL ENGINEERS
116 E. LAKE AVENUE, WATSONVILLE, CA 95076

(831) 722-4175

FIGURE NO.

OF 1

į,