Storm Water Control Plan

Peace Village

(Residential Development)
Santa Cruz, CA
APN 001-022-40

Revised: 03.27.23

Client:

Envision I, LLC 189 Walnut Ave Santa Cruz, CA 95060

By:

C2G / Civil Consultants Group, Inc. 4444 Scotts Valley Drive, Suite 6 Scotts Valley, CA 95066 (831) 438-4420

Storm Water Control Plan

I. Project Information

- a. Residential Development Site Improvement Plans for "Peace Village" Application No. TBD
 APN 001-022-40
 900 High Street, Santa Cruz, CA 95060
- b. Attn: Envision I, LLC, 189 Walnut Ave, Santa Cruz, CA 95060
- c. Project is not phased
- d. The project proposes to construct new Community Housing Building.

II. <u>Project Site Assessment Summary</u>

- a. The site is located northeast of the intersection of High Street and Moore Street. The majority of the lot is hillside, sloping between 10% and 30% from north to south. See Attachment A for site plan.
- b. Total Project Site Area = 87,120.30 S.F. (1.999 Acres)
- c. Watershed management zone = WMZ 1 (95th Percentile), WMZ 6 (85th Percentile) & WMZ 3 (No Retention Requirement)
- d. Design storm intensity = 0.20 inches/hour (flow capacity) & 2.15 inches for 95th Percentile Storm (See Attachment D)
- e. Geology and soil types.
 - Soil Type 177. Complete soil characteristics are provided in Attachment B for complete soil data and letter from Geologist recommending NOT to infiltrate..
- f. Hydrologic Considerations: The nearest drinking water wells are owned by the City of Santa Cruz, and are more than 4,000 feet from the site, to the east and across the San Lorenzo River. The river is approx. 800 feet from the site at its nearest point.
 - Depth to bedrock exceeds 80 inches, and depth to seasonal high-water table exceeds 80 inches. Per the Geotechnical Report added to the appendix B, which shows the ground water level between 11 and 12-feet deep.
- g. The existing lot is developed with asphalt roads and parking with existing buildings. The project area is north of these existing improvements and is currently not developed (impervious) other than a small area of existing concrete and asphalt.
- h. The site currently drains north to south and is collected in an onsite storm drain system (via pipes, inlets and concrete swales) and then into the public storm drain system on High Street. The storm drain system exits the site from the southeasterly corner of the site.
 - No soil or groundwater contamination has been documented at the site. This project is being proposed to be split into 2 new lots. The southerly lot contains the majority of existing impervious area to remain which includes, but is not limited to, the existing buildings, fences, and an asphalt access road and parking with concrete walkways.

The site is currently zoned R110-Single Family Residence and the General Plan Designation is L – Low Density Residential, see City Zoning Map, provided as Attachment D. There are no known covenants associated with this site.

III. Project Storm Water Performance Criteria and Drainage Management

- a. Development Area and BMP Requirement Tier
 - i. The site encompasses 26,264 square feet (sf) of impervious area and is a Tier 2 multi-family apartment project.
 - ii. Proposed Development Area and Impervious Area:

Pre-project impervious surface area:

Post-project impervious surface area:

Amount of impervious surface area that will be replaced:

Amount of new impervious surface area that will be created:

Reduced Impervious Area Credit:

New and Replaced Impervious Area:

Net Impervious Area:

9,147 sf

22,941 sf

22,941 sf

The site is not located within the Urban Sustainability Area (USA), per the City of Santa Cruz USA Map; included as Attachment C. The site is surrounded by Major Roads and is within the Coastal Zone, as shown within the USA Map. The project as proposed meets the more stringent stormwater management requirements for projects outside the USA.

b. One (1) Drainage Management Area (DMA) has been delineated for new construction on the site. A Media Filtration Vault and underground chambers are proposed for the DMA, which includes all the new and/or replaced impervious area. The Chamber bottom will be more than 3-feet above the seasonal high ground water level. The media filtration vault will provide the treatment method prior to storm water entering the chambers. The chambers will provide retention and peak management control.

IV. <u>Site Design and SCMs</u>

- a. Due to the new and/or replaced impervious area of 22,941 square feet proposed, this project falls within the Tier 4 Post-Construction BMP Requirements.
 - i. Tier 1 Site Design and Runoff Reduction elements, intended to control runoff from the site, consist of the following:
 - 1. Disconnected downspouts.
 - 2. Disperse driveway runoff to landscape areas
 - 3. Groundwater Infiltration
 - 4. Implementation of Bio-filtration areas and flow-through planters
 - ii. Tier 2 Water Quality Treatment is achieved by implementing a Media Filtration Vault. Due to the space limitations this project has, a "flow-through" treatment method, as defined in Part-B 3-b-iii for non-retention based treatment of the "Technical Support Document for Post-Construction Stormwater Management Requirements for Development Projects in the Central Coast Region", is being implemented. The Media has been sized to capture and treat 0.20 inches per hour as directed on page 18 of the BMP manual.

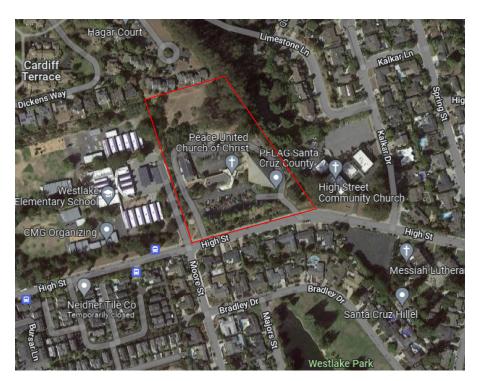
iii. Tier 3 – Runoff Retention is Infeasible for this project site due to the Karst Formations identified within the Geologist Report. There is a significant concern that by collecting water onsite for the purposes of retention will likely cause sink holes to occur. Both C2G and Pacifica Crest Engineering has notified both the State and City of Santa Cruz regarding this concern. Alternates mentioned by the state were to either retain 10% of the EISA onsite or conduct the mitigation offsite. In speaking with Suzanne Healy with the City of Santa Cruz, she informed the design team that the City does not have anything in place for them to approve offsite mitigation.

The Project Equivalent Impervious Surface Area (EISA) has been calculated to determine 10% that will be directed to onsite SCMs.

See sheet C5.1, provided as Attachment A, for locations, areas, and DMA and SCMs.

V. <u>Calculations</u>

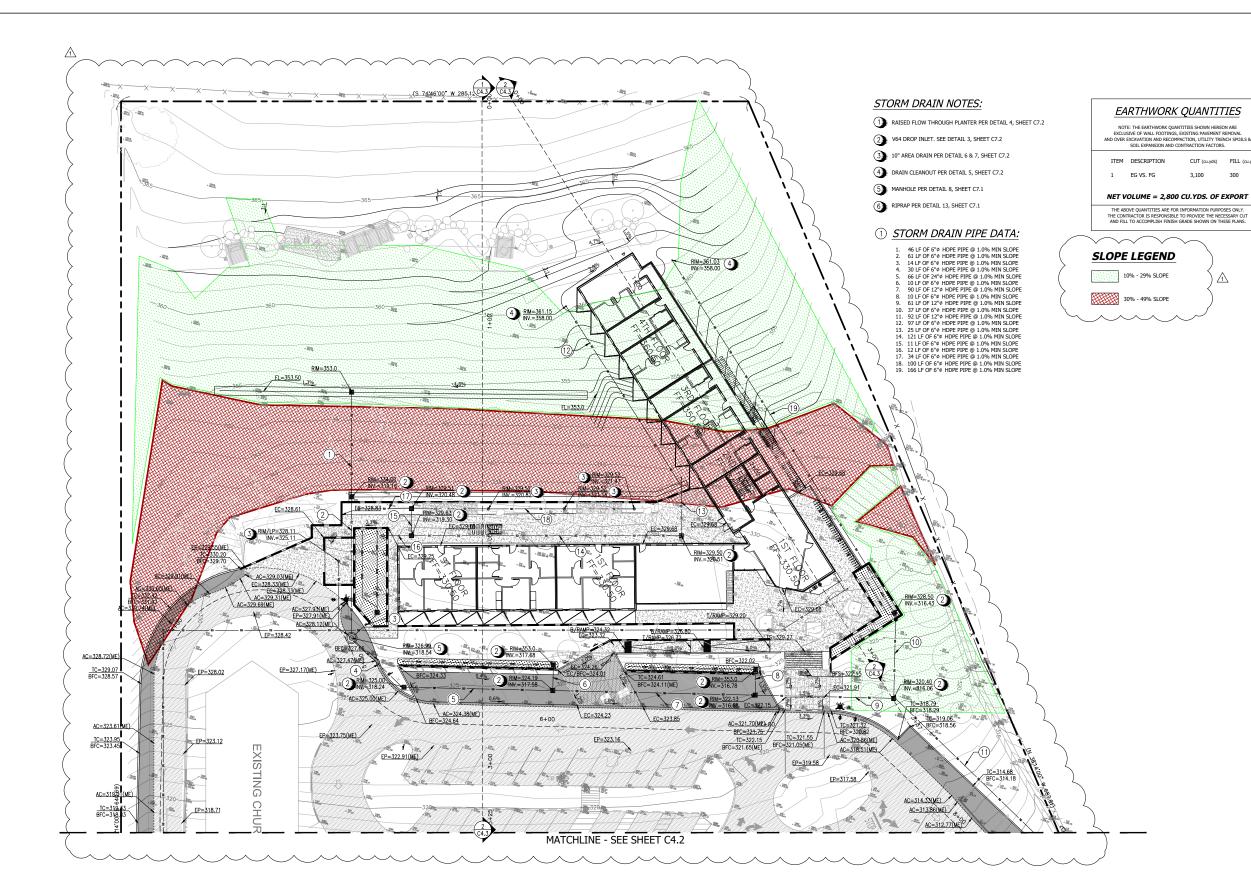
- a. Tier 2 Sizing: The Bio-filtration areas and Flow Through Planters are at least 4% of the receiving Tributary Area.
- b. Tier 3 Sizing: The Central Coast Region Stormwater Control Measure Sizing Calculator was used to determine the required retention volume within the chamber. Calculations have been included in Appendix H.
- c. Tier 4 Sizing: Detention will require both storage calculations as well as restrictor calculations.
 - i. Storage calculations Hydrology Studios Hydrograph Report has been prepared to determine storage volume requirement for detention and the allowable release rate for a 10-year pre-development storm event.
 - ii. Restrictor calculations based on the maximum amount of head these calculations show that the designed orifice will not release more than a 10-year pre-development flow rate.


VI. <u>BMP Operation and Maintenance Plan</u>

- a. Structural Storm Water Control Measures requiring maintenance are shown on sheet C5.1, provided in Attachment A, consisting of Bio-filtration areas, Flow-through Planters & Underground Stormwater Water Chambers.
- b. O&M procedures for the SCMs consist of monthly inspection and removal of trash or other deleterious materials; annual inspection and replacement of any removed soils or vegetation, replanting as required, and repair of any structural damage. Annual inspections shall take place in September, prior to start of the rainy season. See Attachment E for specific requirements and maintenance checklist.

- c. The Media Filtration Vault will require filters to be replaced per the manufacturer's recommendations.
- d. After the medial filtration vault, an Isolator chamber row has been added to ensure additional protection of the chamber system and isolation area for potential sediment. The Isolator chamber should receive monthly and yearly inspections.
- e. Maintenance will be performed by the property owner, and will include both monthly and annual inspections, maintenance, and repair as needed of the SCMs.
- f. Maintenance Agreement included as Attachment E.

VII. Routine and Periodic SCM Maintenance and Inspections


- a. Routine maintenance and inspection requirements and schedules are provided for in Attachment E.
- b. Each SCM will be inspected twice a year to ensure it is operating to designed specifications and per industry standards for the landscape BMPs. Semi-Annual inspections will conform to the same requirements as the monthly inspections and will be reviewed by a civil engineer registered in the state of California. The inspector or reviewing engineer may direct other inspections and/or maintenance to occur based on the findings. Annual reports will be submitted to the County as required and will include information generated during the Semi-Annual inspections.

Vicinity Map scale = nts

ATTACHMENT "A"

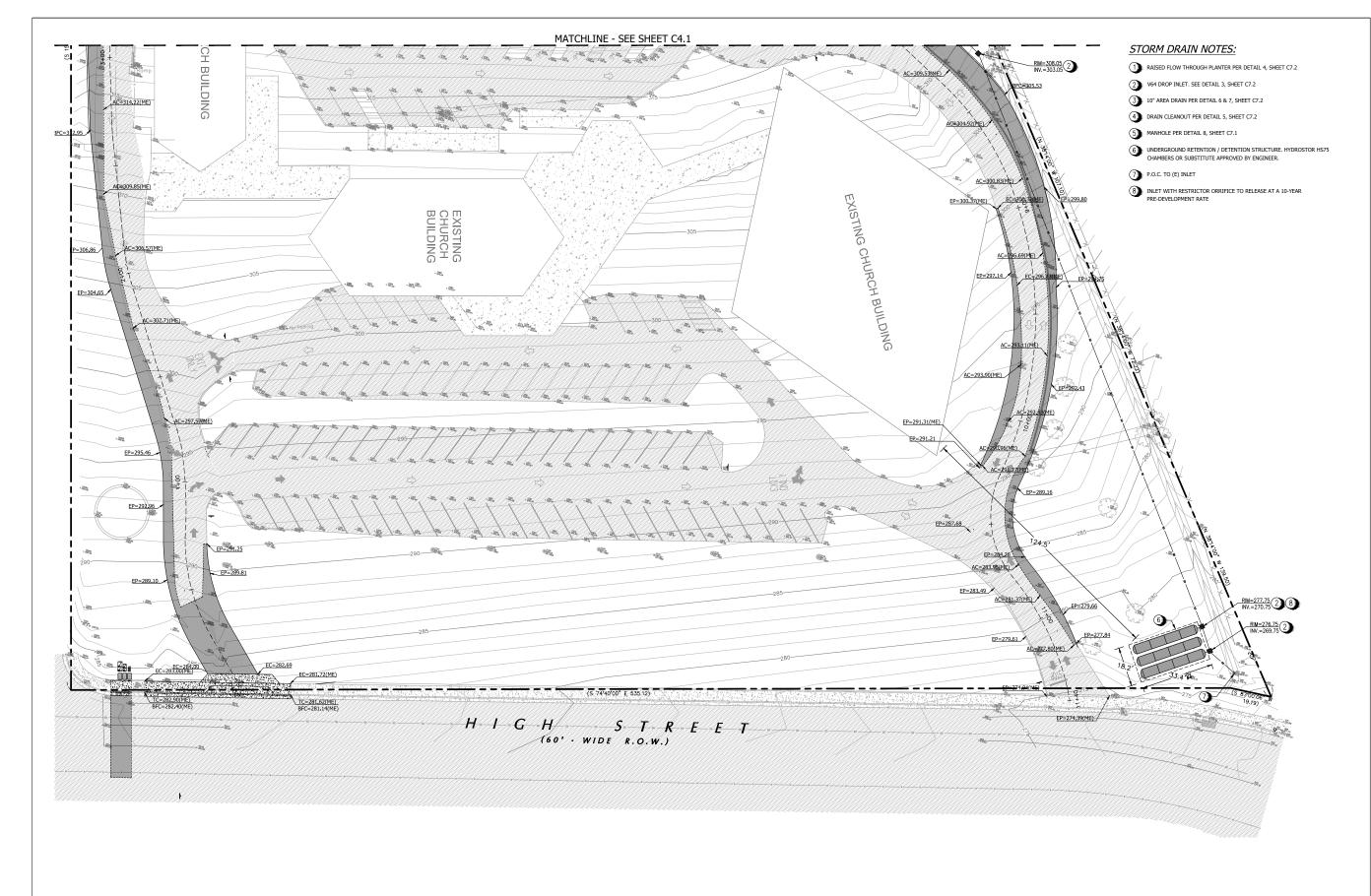
- Civil Plan sheet C4.1
- Civil Plan sheet C4.2
- Civil Plan sheet C5.1

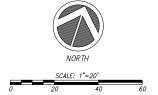
189 WALNUT AVENUE SANTA CRUZ, CA 95060 WORKBENCHBUILT.COM P: 831.227.2217

Engineers/Planners

4444 Scotts Valley Drive / Suite 6
Scotts Valley, CA 95066
831.438.4420

PEACE VILLAGE


CA 95060



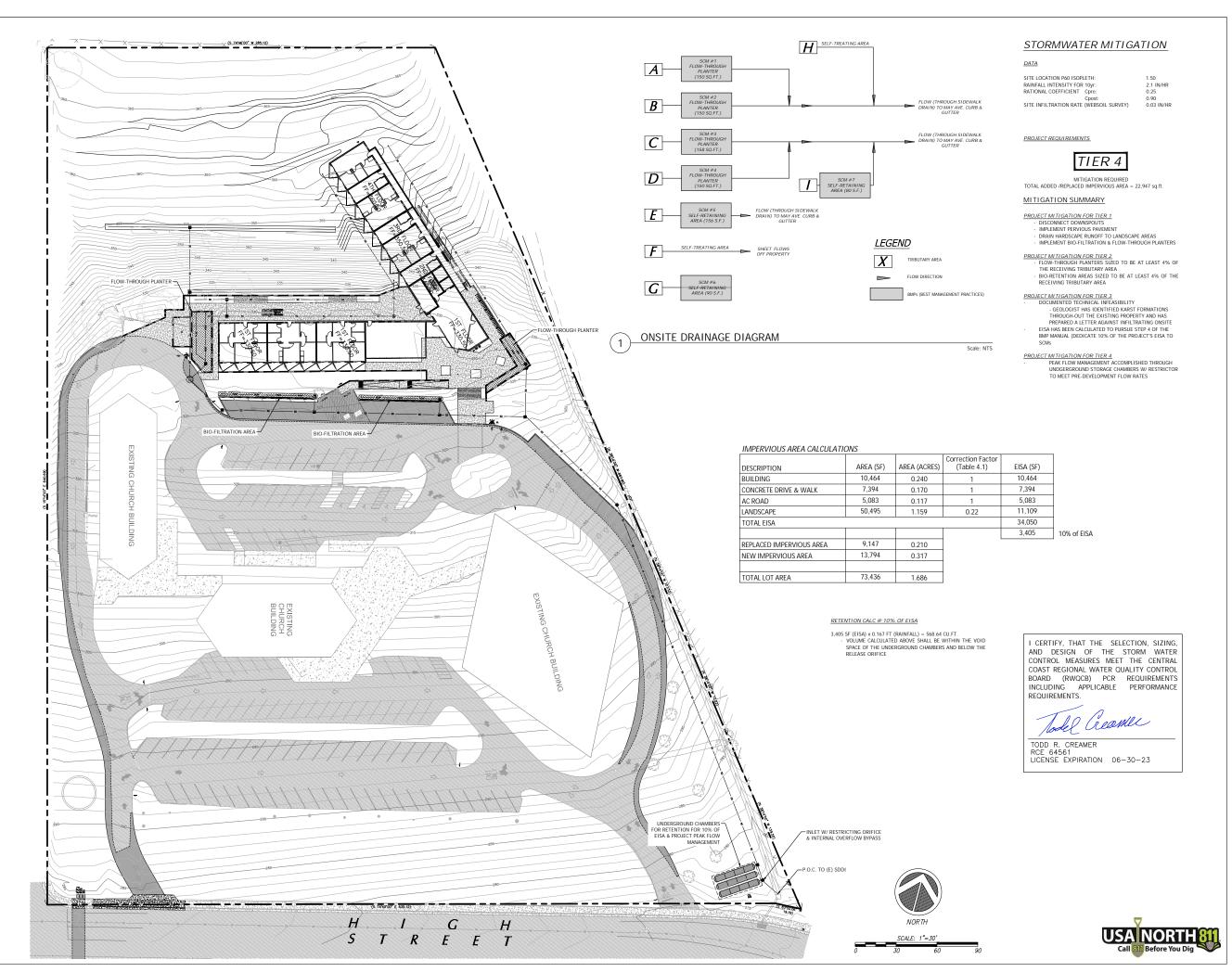
Issue	DESCRIPTIO	N	DATE
Λ	PLANNING REVIS	ION 01	02.23.23
APN	number	001	-022-40
Proj	ect number		2011.04
Print	: Date	08.	15.2022
Drav	vn by		DD/JE
Che	ked by		TC
Scale	2		1" = 30

GRADING PLAN

C4.1

189 WALNUT AVENUE SANTA CRUZ, CA 95060 WORKBENCHBUILT.COM P: 831.227.2217

PEACE VILLAGE


900 HIGH ST. SANTA CRUZ, CA 95060

Issue	DESCRIPTIO	N D	ATE
Æ	PLANNING REVIS	ION 01 02.	23.2
-			
\dashv			
-			
APN	number	001-022	2-40
Proj	ect number	2013	1.04
Prin	t Date	08.15.2	022
Drawn by		DI	D/JE
Checked by			TC
Scal	e	1" :	= 30

GRADING PLAN

C4.2

189 WALNUT AVENUE SANTA CRUZ, CA 95060 WORKBENCHBUILT.COM P: 831.227.2217

C2G/CIVIL CONSULTA

C2G /CIVIL CONSULTANTS GROUP, INC.

Engineers/Planners
4444 Scotts Valley Drive / Suit
Scotts Valley, CA 95066

PEACE VILLAGE

CA 95060

900 HIGH ST. SANTA CRUZ, (

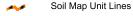
Issue	ssue DESCRIPTION			
\triangle	PLANNING REVISIO	ON 01 02.23.2		
APN	I number	001-022-4		
Proj	ect number	2011.0		
Prin	t Date	08.15.202		
Drawn by		DD/J		
Checked by		T		
Scal	۵			

STORM WATER CONTROL PLAN

C5.1

ATTACHMENT "B"

- Soil Map
- Soil Data
- Letter from Geologist


MAP LEGEND

Area of Interest (AOI)

Area of Interest (AOI)

Soils

Soil Map Unit Polygons

Soil Map Unit Points

Special Point Features

Blowout

Borrow Pit

Clay Spot

Closed Depression

Gravel Pit

Gravelly Spot

Landfill

Lava Flow

Marsh or swamp

Mine or Quarry

Miscellaneous Water

Perennial Water

Rock Outcrop

+ Saline Spot

Sandy Spot

Severely Eroded Spot

Sinkhole

Slide or Slip

Sodic Spot

Spoil Area

Stony Spot

Very Stony Spot

Wet Spot

△ Other

Special Line Features

Water Features

Streams and Canals

Transportation

+++ Rails

Interstate Highways

_

US Routes

Major Roads

Local Roads

Background

Aerial Photography

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL:

Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Santa Cruz County, California Survey Area Data: Version 16, Sep 14, 2022

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Apr 13, 2020—Apr 24, 2020

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
123	Cropley silty clay, 2 to 9 percent slopes, MLRA 14	49.8	41.8%
125	Danville loam, 2 to 9 percent slopes		
Elkhorn sandy loam, 2 to 9 percent slopes		19.2	16.1%
Pits-Dumps complex		8.8	7.4%
177 Watsonville loam, 2 to 15 percent slopes		6.5	5.5%
180	Watsonville loam, thick surface, 15 to 30 percent slope s	23.1	19.3%
Totals for Area of Interest		119.2	100.0%

Map Unit Description

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions in this report, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named, soils that are similar to the named components, and some minor components that differ in use and management from the major soils.

Most of the soils similar to the major components have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Some minor components, however, have properties and behavior characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. All the soils of a series have major horizons that are similar in composition, thickness, and arrangement. Soils of a given series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Additional information about the map units described in this report is available in other soil reports, which give properties of the soils and the limitations, capabilities, and potentials for many uses. Also, the narratives that accompany the soil reports define some of the properties included in the map unit descriptions.

Santa Cruz County, California

177—Watsonville loam, 2 to 15 percent slopes

Map Unit Setting

National map unit symbol: h9g5 Elevation: 20 to 1,200 feet

Mean annual precipitation: 28 inches Mean annual air temperature: 57 degrees F

Frost-free period: 245 to 275 days

Farmland classification: Farmland of statewide importance

Map Unit Composition

Watsonville and similar soils: 85 percent

Minor components: 15 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Watsonville

Setting

Landform: Marine terraces

Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Tread

Down-slope shape: Linear Across-slope shape: Linear Parent material: Alluvium

Typical profile

H1 - 0 to 18 inches: loam H2 - 18 to 39 inches: clay

H3 - 39 to 63 inches: sandy clay loam

Properties and qualities

Slope: 2 to 15 percent

Depth to restrictive feature: More than 80 inches Drainage class: Somewhat poorly drained

Capacity of the most limiting layer to transmit water (Ksat): Very low

to moderately low (0.00 to 0.06 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0

mmhos/cm)

Available water supply, 0 to 60 inches: Very low (about 2.9 inches)

Interpretive groups

Land capability classification (irrigated): 3e Land capability classification (nonirrigated): 3e

Hydrologic Soil Group: D

Ecological site: R014XD089CA - CLAYPAN

Hydric soil rating: Yes

Minor Components

Elkhorn, sandy loam

Percent of map unit: 5 percent

Hydric soil rating: No

Pinto, loam

Percent of map unit: 4 percent

Hydric soil rating: No

Watsonville, thick surface

Percent of map unit: 3 percent

Landform: Marine terraces

Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Tread

Hydric soil rating: Yes

Danville

Percent of map unit: 1 percent Hydric soil rating: No

Elder

Percent of map unit: 1 percent Hydric soil rating: No

Cropley, silty clay

Percent of map unit: 1 percent Hydric soil rating: No

Data Source Information

Soil Survey Area: Santa Cruz County, California Survey Area Data: Version 16, Sep 14, 2022

GEOTECHNICAL | ENVIRONMENTAL | CHEMICAL | MATERIAL TESTING | SPECIAL INSPECTIONS

13 October 2022

Proposal No. PR 22-168

Envision I, LLC Attention: Sibley Simon 189 Walnut Ave Santa Cruz, 95060 Sibley@envisionhousing.us 831-419-4091

Subject: Geological hazards and risks related to infiltration in karst

Proposed apartment housing

900 High Street Santa Cruz, CA 95060

County of Santa Cruz APN 001-022-40

Dear Sibley,

This letter presents a summary of our geological findings as they pertain to storm water infiltration for the proposed development on the subject property. We are partially relying upon the body of work completed by the author (Erik Zinn) under the auspices of Zinn Geology. That work culminated in a geology report titled "PHASE I KARST AND SLOPE STABILITY HAZARDS INVESTIGATION" dated 2 July 2018 by Zinn Geology (Job #2018011-G-SC).

OVERVIEW

It is our understanding that Project Civil Engineer of Record, C2G, is in the process of coordinating the storm water mitigation approach with the manager of the City of Santa Cruz Stormwater Management Plan, Suzanne Healy. It is also our understanding that the current design scheme is trying to meet Tier 3 requirements from the City of Santa Cruz Mandatory Low Impact Development Requirements. Within the section that describes the steps for designing for Tier 3 (Chapter 4, section 4.3), there is an optional step described as "Step 3" that covers situations arising from infeasible runoff retention. One of the listed conditions for infeasibility is "Geotechnical Hazards", which in our opinion, applies to this project. The end paragraph for Step 3 is as follows:

Technical infeasibility must be clearly documented with supporting evidence such as geotechnical reports, hydrological analysis, documentation of pollutant concerns on the property, etc. Technical infeasibility determination will only be granted after demonstration that site layout has been optimized and all storm water retention options have been considered.

Evidence of karst geology underlying the property and the proposed development area was encountered by Zinn Geology during their prior investigation in 2018 (Zinn Geology, 2018). Zinn Geology presented substantive evidence and findings in their

2018 report describing the hazards and risks related to the underlying karst geology at the site and issued recommendations that flowed from those findings.

The widely spaced gridded boring program pursued in 2018 by the Project Geotechnical Engineer of Record, Becky Dees of Dees and Associates, encountered marble bedrock at depth below the site, mantled by an inconsistent blanket of marble rubble, some soft soil and marine terrace deposits (see attached plates excerpted from the Zinn Geology 2018 report). This is consistent with the University of California at Santa Cruz (UCSC) campus geology that abuts the property to north, the exposure of marble in an old quarry to the east and the marble bedrock that is documented to underlie the City of Santa Cruz Bay Street Reservoir site.

The gently sloping portion of the marble surface that underlies the subject property appears to have been formed and sculpted as part of the creation of the ~213ka second emergent marine terrace. At least one infilled doline cuts the beveled marble surface, based on the morphology of the marble surface and distribution of marble rubble encountered by Zinn Geology (see Plates 1 and 2). It is likely far more complex than that and is probably one of a complex of dolines on the property. In the author's experience of having worked on karst projects on the UCSC campus for over 30 years, dolines and sinkholes typically develop along structural geological features overprinted onto the marble bedrock in the form of ancient fault and fracture zones. The marble bedrock is crushed in those zones and falls prey to the dissolution process that creates caves, voids, dolines and sinkholes within marble bedrock over geologic time.

The following recommendations regarding the handling of stormwater and landscape watering were issued in the 2018 Zinn Geology report:

- 3. We recommend that all of the storm water generated for this project be disposed in the City of Santa Cruz storm drains. Attenuating the storm flows by detaining the water in impervious structures is geologically acceptable, as long as the water is NOT allowed to infiltrate the soil.
- 4. Landscape watering for the project should NOT saturate the subgrade in an unnatural fashion. The natural distribution and application rate of rainfall should be emulated for landscaping irrigation, in order to avoid saturating the subgrade and triggering a doline collapse.

We have learned valuable lessons at the adjacent UCSC campus in the past with the reactivation of sinkholes in the vicinity of existing storm water treatment systems and bio swales/infiltration areas on campus (see Figure 1 below). Storm water infrastructure sited on karst and over dolines can create an elevated risk of triggering the reactivation of a doline because of the increase in the infiltration rate and volume of storm water. The resulting sinkholes that form can threaten important and expensive facilities. The subsequent repairs and rerouting of the storm water infrastructure also can cost significantly more than the original design and construction costs for the storm water system.

Figure 1 - 2015 photo of sinkhole developed within a reactivated doline under a stormwater treatment system on the UCSC campus

FINDINGS

The subject property is underlain by marble bedrock, marble rubble, doline fill and marine terrace deposits. At least one large, infilled doline cuts the marble surface under the proposed development area footprint and there are likely more infilled dolines on the property based on the experience with karst investigations adjacent to the property.

The potential hazard of doline reactivation and the development of a sinkhole at the surface in the proposed development area and on the property is already high and will be greatly increased if water is infiltrated at the site. Development of a sinkhole may undermine the existing and proposed structures, as well as existing and proposed utilities and infrastructure. Subsequently, if stormwater is infiltrated on the site, the risk to the existing and proposed structures and infrastructure is "greater than ordinary" as defined in Appendix A of this letter.

RECOMMENDATIONS

Based upon the findings listed above, we reiterate the stormwater and landscape watering recommendations from the 2018 Zinn Geology report as follows:

- 1. We recommend that the storm water generated for this project be disposed in the City of Santa Cruz storm drains. Attenuating the storm flows by detaining the water in impervious structures is geologically acceptable, as long as the water is NOT allowed to infiltrate the soil.
- 2. Landscape watering for the project should NOT saturate the subgrade in an unnatural fashion. The natural distribution and application rate of rainfall should be emulated for landscaping irrigation, to avoid saturating the subgrade and triggering a doline collapse and the formation of sinkhole.

This concludes our letter. Please do not hesitate to contact us if you have any questions or concerns about this letter.

Sincerely,

PACIFIC CREST ENGINEERING INC.

ERIK N. ZINN No. 2139 • ERIK N. ZINN No. 6854 • Principal Geologist P.G. #6854, C.E.G. #2139

Attachments: References

Appendix A – Scale of acceptable risks from geologic hazards Plates 1 and 2 excerpted from 2018 Zinn Geology report (back of letter)

REFERENCES

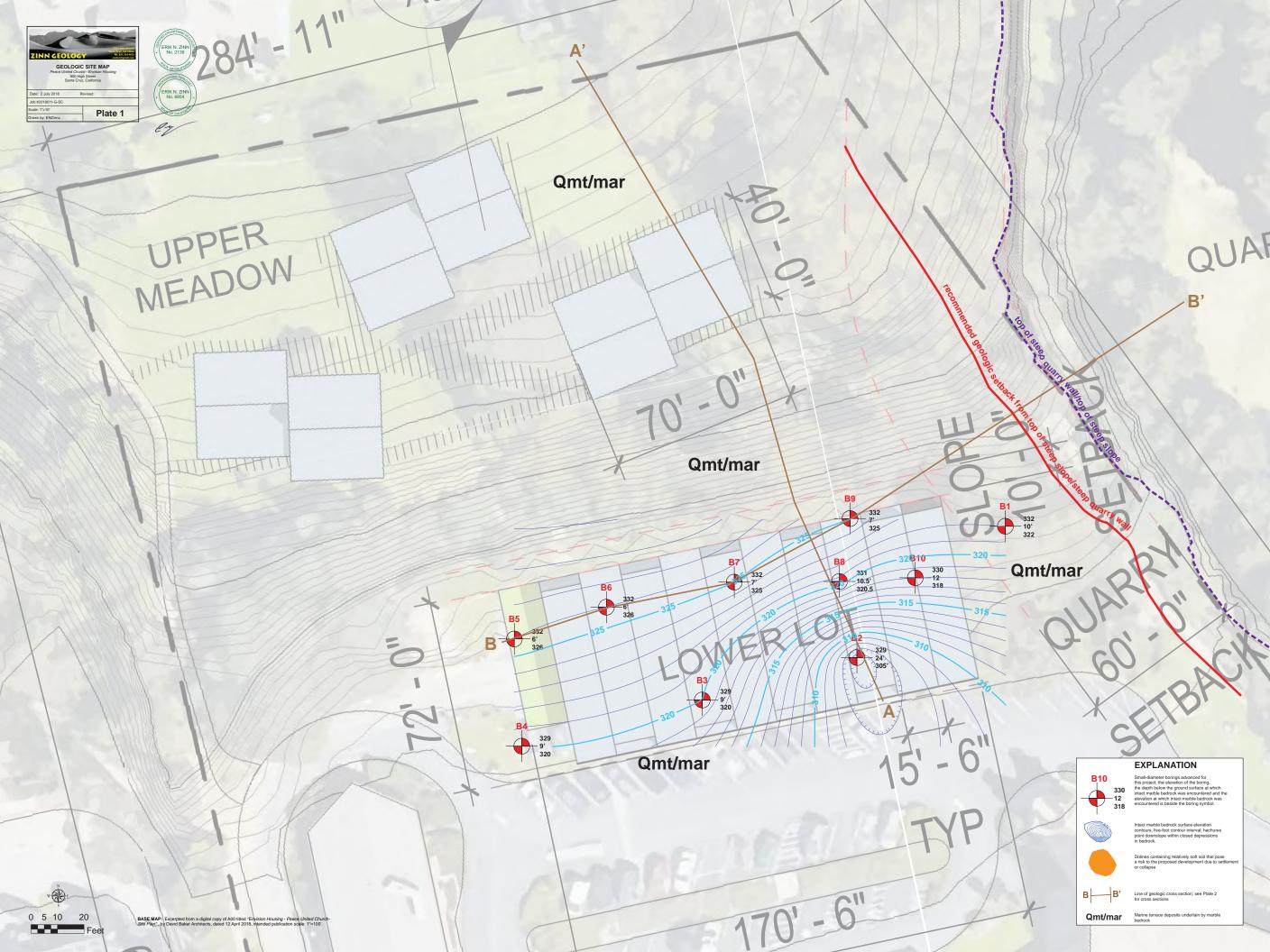
City of Santa Cruz, 2014, DEVELOPMENT AND REMODELING PROJECTS, Storm Water Best Management Practices For Private and Public Development Projects Chapter 6B of the Best Management Practices Manual for the City's Storm Water Management Program, publically available at https://www.cityofsantacruz.com/home/showpublisheddocument/36560/6354182327700 30000

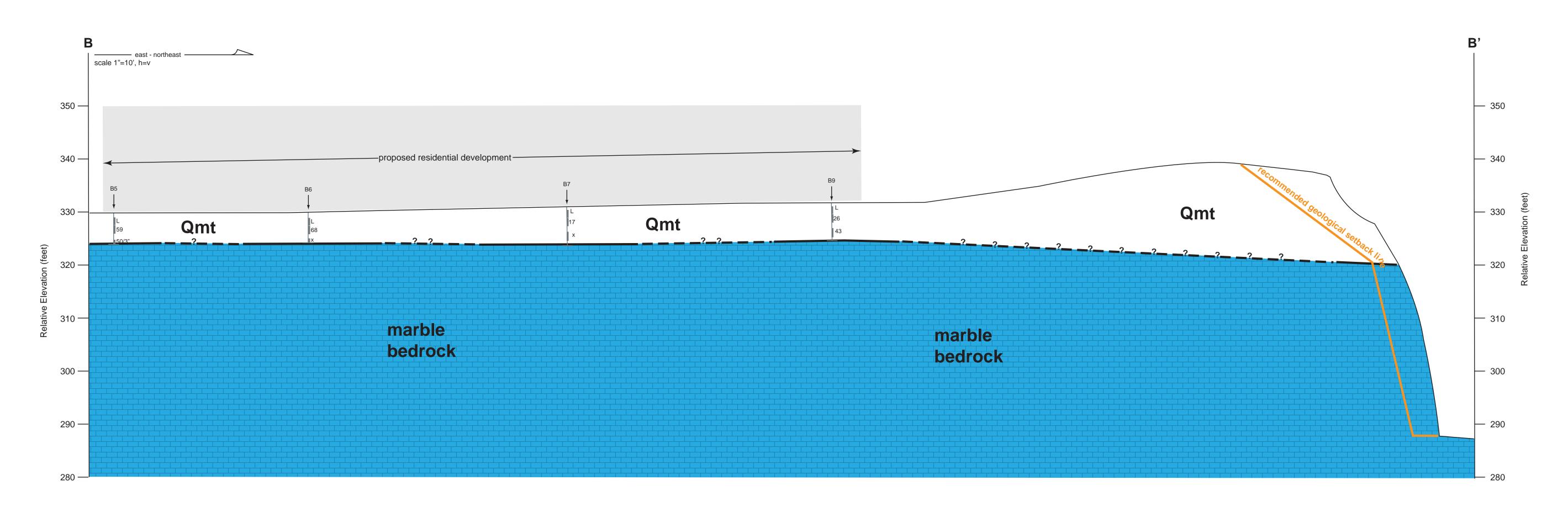
Zinn Geology, 2018, PHASE I KARST AND SLOPE STABILITY HAZARDS INVESTIGATION - Peace United Church - Envision Housing, Proposed Housing Development, 900 High Street Santa Cruz, California, Job #2018011-G-SC, unpublished consultant report.

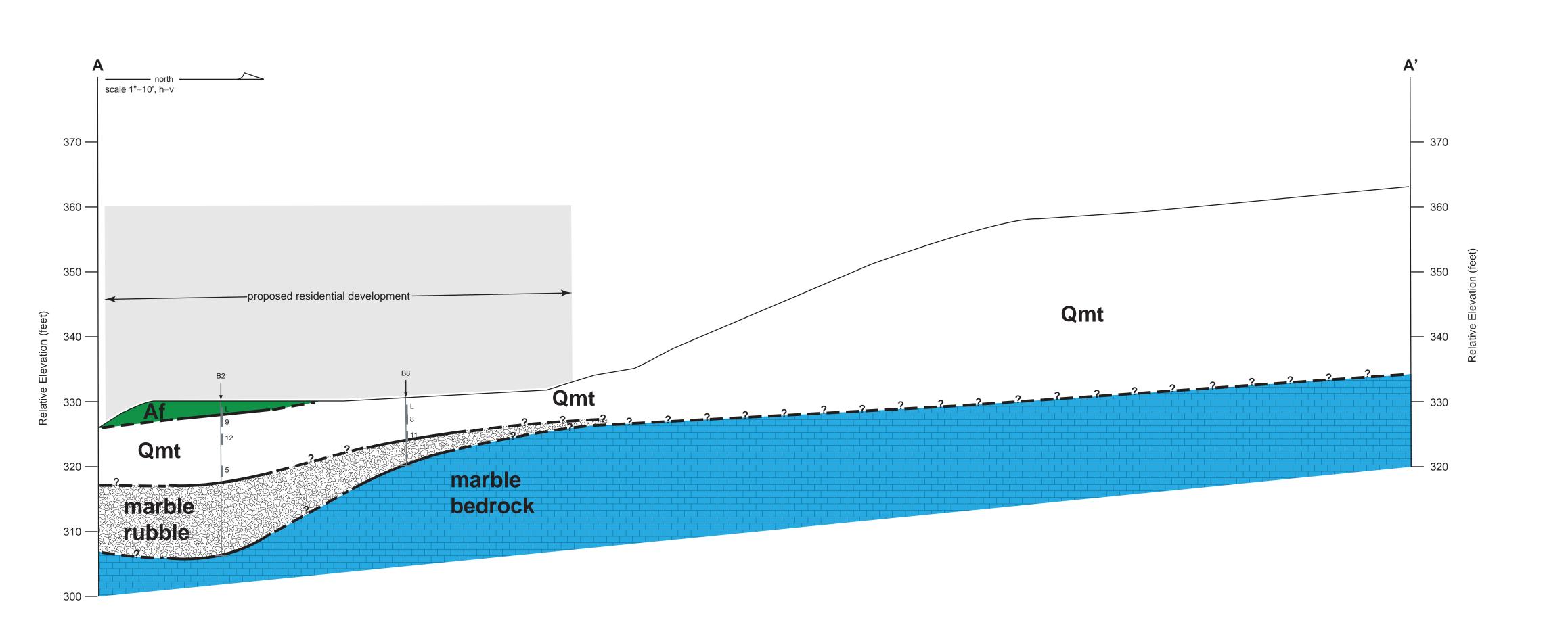
APPENDIX A

SCALE OF ACCEPTABLE RISKS FROM GEOLOGIC HAZARDS

SCALE O	SCALE OF ACCEPTABLE RISKS FROM SEISMIC GEOLOGIC HAZARDS					
Risk Level	Extra Project Cost Probably Required to Reduce Risk to an Acceptable Level					
Extremely low ¹	Structures whose continued functioning is critical, or whose failure might be catastrophic: nuclear reactors, large dams, power intake systems, plants manufacturing or storing explosives or toxic materials.	No set percentage (whatever is required for maximum attainable safety).				
Slightly higher than under "Extremely low" level. ¹	Structures whose use is critically needed after a disaster: important utility centers; hospitals; fire, police and emergency communication facilities; fire station; and critical transportation elements such as bridges and overpasses; also dams.	5 to 25 percent of project cost. ²				
Lowest possible risk to occupants of the structure. ³	Structures of high occupancy, or whose use after a disaster would be particularly convenient: schools, churches, theaters, large hotels, and other high rise buildings housing large numbers of people, other places normally attracting large concentrations of people, civic buildings such as fire stations, secondary utility structures, extremely large commercial enterprises, most roads, alternative or non-critical bridges and overpasses.	5 to 15 percent of project cost. ⁴				
An "ordinary" level of risk to occupants of the structure. ^{3,5}	The vast majority of structures: most commercial and industrial buildings, small hotels and apartment buildings, and single family residences.	1 to 2 percent of project cost, in most cases (2 to 10 percent of project cost in a minority of cases). ⁴				


- 1 Failure of a single structure may affect substantial populations.
- These additional percentages are based on the assumptions that the base cost is the total cost of the building or other facility when ready for occupancy. In addition, it is assumed that the structure would have been designed and built in accordance with current California practice. Moreover, the estimated additional cost presumes that structures in this acceptable risk category are to embody sufficient safety to remain functional following an earthquake.
- 3 Failure of a single structure would affect primarily only the occupants.
- 4 These additional percentages are based on the assumption that the base cost is the total cost of the building or facility when ready for occupancy. In addition, it is assumed that the structures would have been designed and built in accordance with current California practice. Moreover the estimated additional cost presumes that structures in this acceptable-risk category are to be sufficiently safe to give reasonable assurance of preventing injury or loss of life during and following an earthquake, but otherwise not necessarily to remain functional.
- 5 "Ordinary risk": Resist minor earthquakes without damage: resist moderate earthquakes without structural damage, but with some non-structural damage; resist major earthquakes of the intensity or severity of the strongest experienced in California, without collapse, but with some structural damage as well as non-structural damage. In most structures it is expected that structural damage, even in a major earthquake, could be limited to repairable damage. (Structural Engineers Association of California)


Source: Meeting the Earthquake, Joint Committee on Seismic Safety of the California Legislature, Jan. 1974, p.9.



Risk Level	Structure Type	Risk Characteristics
THISK LEVEL	ou detaile 17pe	THISK GHARACCENSTICS
Extremely low risk	Structures whose continued functioning is critical, or whose failure might be catastrophic: nuclear reactors, large dams, power intake systems, plants manufacturing or storing explosives or toxic materials.	Failure affects substantions, risk nearly equanearly zero.
Very low risk	Structures whose use is critically needed after a disaster: important utility centers; hospitals; fire, police and emergency communication facilities; fire station; and critical transportation elements such as bridges and overpasses; also dams.	Failure affects substanti populations. Risk slightly higher than 1 above.
Low risk	Structures of high occupancy, or whose use after a disaster would be particularly convenient: schools, churches, theaters, large hotels, and other high rise buildings housing large numbers of people, other places normally attracting large concentrations of people, civic buildings such as fire stations, secondary utility structures, extremely large commercial enterprises, most roads, alternative or noncritical bridges and overpasses.	Failure of a single structure would affect primarily only the occupants.
"Ordinary" risk	The vast majority of structures: most commercial and industrial buildings, small hotels and apartment buildings, and single family residences.	1. Failure only affects owne /occupants of a structure rathe than a substantial population. 2. No significant potential for log of life or serious physical injury
		Risk level is similar of comparable to other ordinal risks (including seismic risks) to citizens of coastal California.
		4. No collapse of structure structural damage limited trepairable damage in most case This degree of damage is unlike as a result of storms with repeat time of 50 years or less.
Moderate risk	Fences, driveways, non-habitable structures, detached retaining walls, sanitary landfills, recreation areas and open space.	Structure is not occupied occupied infrequently.
		Low probability of physic injury.
		3. Moderate probability of collapse

SYMBOLS

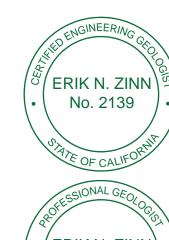
Interpreted contact between earth material units; queried where

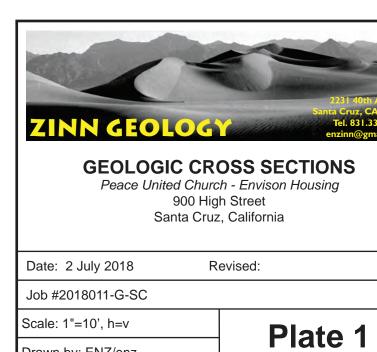
Exploratory boring advanced by Dees & Associates; Small filled rectangles indicate where samples were taken; integers next to rectangles are blow counts for that sample, normalized to a Terzaghi sampler.

EARTH MATERIALS

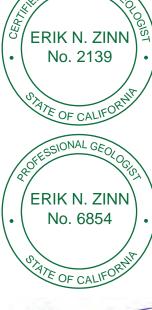
Artificial fill

Marble

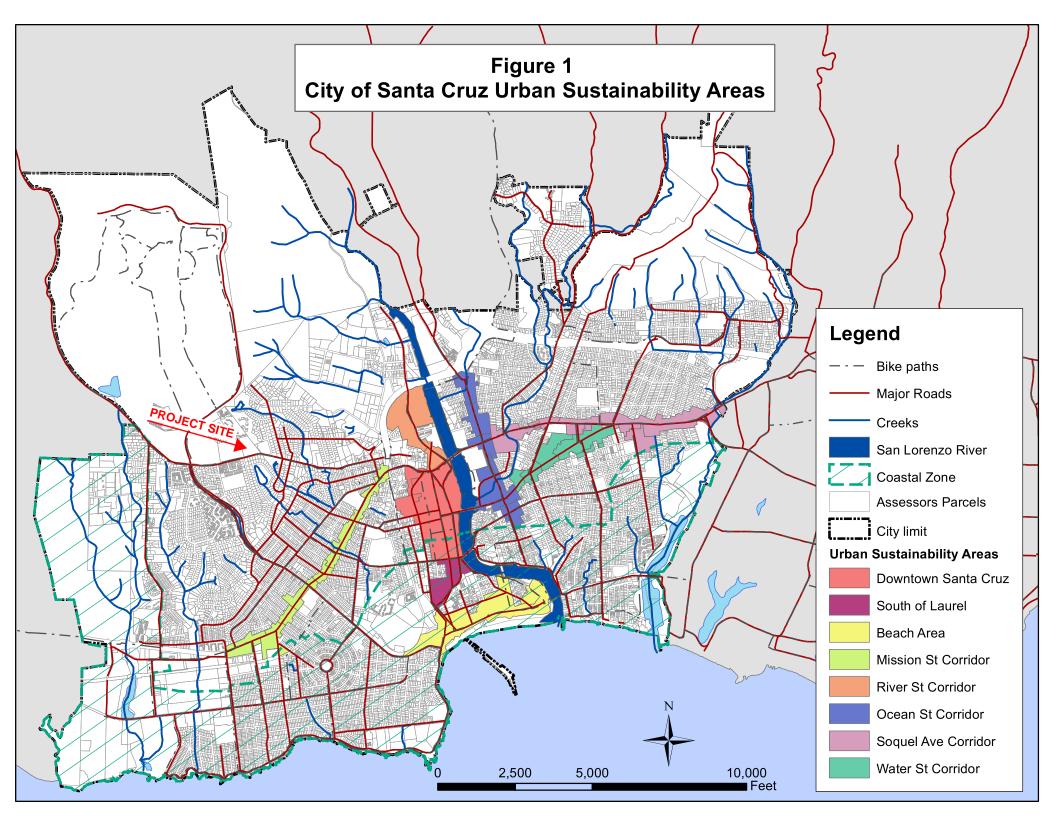

Qmt Marine terrace deposits


Marble rubble - angular gravel to boulder sized fragments of marble that have collapsed into doline Marble rubble

Intact marble bedrock


NOTES

- 1. Marble rubble are shown only on cross section.
- 2. The configuration of the marble surface portrayed on our geologic profile does not exactly match the marble surface portrayed on Geologic Site Map (Plate 1). The marble surface contour map was used as a general guideline for the profile constructions. The karst geometry is conservatively interpreted on the profile; hence, the marble surface shown on the profile varies slightly from the configuration portrayed on Plate 1.
- 3. Final location and foundation depth of proposed buildings has not been decided upon as of the publication of this report. Buildings shown on this cross are schematic and are intended only to aid the reader in understanding where the building might approximately lie upon the existing ground surface with respect to the underlying geologic structure.



Drawn by: ENZ/enz

ATTACHMENT "C"

- City of Santa Cruz USA Map

ATTACHMENT "D"

- City of Santa Cruz Zoning Exhibit

APPENDIX A STORM WATER AND LOW-IMPACT DEVELOPMENT BMP REQUIREMENT WORKSHEET

How to Use This Worksheet

The City's Storm Water BMP requirements are based on project type, proposed impervious area, and location within the watershed. This worksheet was developed to help permit applicants determine and meet storm water BMP requirements applicable to a proposed development or redevelopment

- 1 Download this fillable form online at www.cityofsantacruz.com/LID
- 2 Fill out the Worksheet to determine what stormwater BMP requirements apply to a proposed project.
- 3 Attach Worksheet and additional documentation required as listed in the City Storm Water Best Management Practices for Private and Public Development Projects to plans for review by the Department of Public Works
- 4 Please contact the Public Works Environmental Project Analyst at 420-5160 if you have any questions on completing the worksheet.

A - Project Type Check project type that applies:
☐ Single Family Home ☑ Multi-family, Commercial, Industrial, Public facilities
Check development type that applies:
✓ New Development ☐ Redevelopment / Remodel
B - Proposed Development Area and Impervious Area:
Pre-project impervious surface area: 9147 sq ft
Post-project impervious surface area: 22941 sq ft
Amount of impervious surface area that will be replaced : 9147 sq ft
Amount of new impervious surface area that will be created : 13794 sq ft
Reduced Impervious Area Credit: 0 sq ft
New and Replaced Impervious Area = 22941 sq ft
Net Impervious Area = Impervious Area created Impervious Area content Sq ft

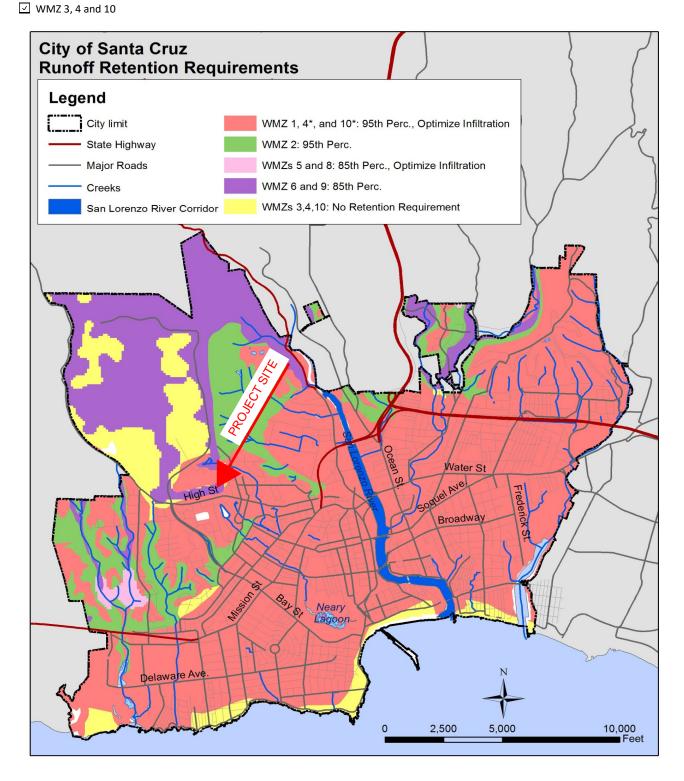
C - Post-Construction BMP Tier requirement:

Check Project Type and Impervious Area (from calculations above) that applies.

BMP requirements are cumulative (e.g. a project subject to BMP Tier 3 is also subject to Tiers 1 and 2), permit review fees are not cumulative.

SINGLE-FAMILY HOMES	BMP TIER	Permit Review Fee	Stormwater Control Plan required?	
Single-family Home with Net Impervious Area < 15,000 sf, please consult Chapter 6A, BMPs for Single-Family Homes on Small Lots	N/A	\$0	No	
Net Impervious Area ≥ 15,000 sf; New and replaced impervious area < 22,500 sf	3	\$330	Yes	
□ New and replaced impervious area ≥ 22,500 sf	4	\$550	Yes	
MULTI-FAMILY, COMMERCIAL, INDUSTRIAL, PUBLIC FACILITIES	BMP TIER	Permit Review Fee	Stormwater Contro Plan Required?	
New and Replaced Impervious Area ≥ 2,500 sf; Net Impervious Area < 5,000 sf	1	\$0	No	
Net Impervious Area ≥ 5,000 sf; New and Replaced Impervious Area < 15,000 sf	2	\$330	Yes	
			Yes	
New and Replaced Impervious Area ≥ 15,000 sf but < 22,500 sf	3	\$550	res	

If the proposed project is only subject to BMP Tiers 1 or 2, skip to Step F.


D - Watershed Management Zones - For projects subject to Tiers 3 Post-Construction BMP requirements only.

Watershed Management Zones are viewable online on the City of Santa Cruz GIS website at: http://gis.cityofsantacruz.com/gis/index.html

Watershed Management Zones and associated Tier 3 (Runoff Retention) Post-Construction BMP requirements

If Tier 3 BMP requirements are applicable to the project, check the watershed management zone area where the project is located.

✓ WMZ 1, and portions of 4, and 10 overlying groundwater basin
 ✓ WMZ 5 and 8
 ✓ WMZ 6 and 9

Check if sp	Circumstances - For projects subject to Tiers 3 and 4 Post-Construction BMP repectal circumstance applies to the project		.			
	Highly Altered Channel and Intermediate Flow Control Facility		Urban Sustainability Area			
	onal Stormwater BMP Requirements for Multi-family, Commercial and dditional BMP requirements apply to the project	Industrial	projects			
a) Sta	ate Construction Activities Storm Water General Permit					
	Construction activity resulting in land disturbance of one acre or more, or part	t of a larger	common plan of development			
b) Ac	dditional Source Control BMP requirements for specific facilities					
	Commercial or industrial facility	✓	Parking areas			
	Material Storage Areas		Pools, spas and other water features			
	Vehicle fueling, maintenance and wash areas	\checkmark	Trash Storage Areas			
	Equipment and accessory wash areas		Restaurants and food processing or manufacturing facilities			
	Interior and parking garage floor drains		Miscellaneous drain or wash water			
☐ Con	secription:					
	Concentrate improvements on the least-sensitive portions of the site and minimize grading Description: minimizing grading by stepping building to match existing slopes					
Direct roof runoff into cisterns or rain barrels Description:						
D ☑ Dire		ior to enter	ing storm drain system			
D Direction D D Use	escription:ect roof downspouts to landscaped areas or rain gardens	e, etc.)				

ATTACHMENT "E"

- Operations and Maintenance Agreement

Appendix G

Maintenance Agreement Regarding Maintenance of Structural or Treatment Control Best Management Practices (BMPs)

for:	<i>APN#</i>				
I,		, being the owner of the real property, APN No,			
which maint	which is located at				
Publi and n signif	ic Works prior to December 1 of each year naintenance dates for the past year, and recipicant observations or repairs made. The pects Analyst, Department of Public Works	f inspection and maintenance to the City of Santa Cruz Department of ear. Proof of inspection and maintenance shall include a log of inspection ceipts if conducted by a hired service. The log should also indicate any proof of inspection and maintenance should be sent to: Environmental eks, City of Santa Cruz, 809 Center Street, Room 201, Santa Cruz, CA			
assun intere	ned by subsequent property owners and leasest in the property or in any lease agreement or lessee acknowledges his or her understanding the subsequences.	d, or leased, the obligations hereby imposed on the property owner shall be ssees. To this end, property owner, in any deed transferring an ownership nt for the property, shall include a term by which the subsequent property standing of the obligations imposed by this agreement and expressly agreeing with all said obligations imposed by this agreement.			
maint		to the new property owner or lessee regarding proper BMP inspection and rmation shall accompany the first deed transfer. This information shall			
	(2) a map of the property indicating the	vater structural or treatment control BMPs; e BMP locations; and d necessary maintenance can be performed.			
The t	ransfer of this information shall also be re-	quired with any subsequent sale of the property.			
		Taintenance Agreement may result in enforcement actions including City's Municipal Code, Chapter 16.19.190 Administrative Remedies.			
I have	e read the above agreement and understand	d it.			
Owne	er Name:	Signature:			
Date:	·				
Owne	er Address:				

Phone:

ATTACHMENT "F"

- Todd Creamer's Resume

Todd R. Creamer, PE

Position: Principal Engineer, C2G/Civil Consultants Group, Inc.

Scotts Valley, California

Education: Marquette University, BS/Civil Engineering

Registration: California: RCE 64561

California: QSP/QSD No. 00439

National: CESC No. 2752

Experience: Mr. Creamer serves as President of C2G/Civil Consultants Group, Inc. and as

Principal Engineer on assignments for both public and private sector clients. His design experience in California has primarily been located in the South Bay counties of Santa Clara, Santa Cruz and Monterey Counties. Mr. Creamer has

also worked in Illinois, Wisconsin and Minnesota.

Recently, Mr. Creamer has been involved with multiple projects associated with school construction within the South Bay area. He has been the project manager for utility infrastructure improvements, road improvements, and offsite improvements for the K-12 schools and community college. Mr. Creamer has also been the civil consultant associated with multiple water distribution system designs throughout the Santa Cruz County area.

Much of Mr. Creamer's professional career has been devoted to site development for public and private sector building complexes, as well as roadway and utility system improvements. His knowledge of municipal and land development engineering is based on consulting work in California, Northern Illinois as well as public works employment with the Cities of Fridley, Minnesota and Franklin, Wisconsin.

Mr. Creamer breadth of experience in land development has also exposed him to various storm water quality and erosion control requirements throughout the country. This experience has allowed Mr. Creamer to create numerous Storm Water Pollution Prevention Plans (SWPPP's) as well as inspection for erosion and sediment control associated with improvement projects. Mr. Creamer's devotions to storm water quality has resulted in his pursuit of Certification by the Soil and Water Conservation Society and International Erosion Control Association in Erosion and Sediment Control.

Affiliations: American Society of Civil Engineers (ASCE)

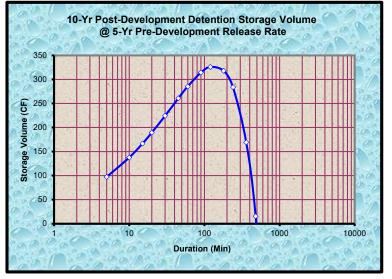
Exchange Club of Scotts Valley – President Elect 05-06 President 06-07

Treasure 07-08

Certifications:

Certified Professional in Erosion and Sediment Control - CESC No. 2752 Certified Master WaterCAD modeler – Haestad Methods

ATTACHMENT "G"


- Stormwater calculations

RUNOFF DETENTION BY THE MODIFIED RATIONAL METHOD

Data Entry:	PRESS TAB & ENTE	ER DESIGN V	ALUES Ver: 6.14.	.21
Site Location	on P60 Isopleth:	1.50	Fig. SWM-2 in County Design Criteria	
Rational Co	efficients Cpre:	0.25	See note # 2	
	Cpost:	0.90	See note # 2	
In	npervious Area:	22941	ft ² See note # 2 and # 4	

STRUCTURE DIMENSIONS FOR DETENTION							
1091	ft ³ storage vol	t ³ storage volume calculated					
100	% void space	void space assumed					
1091	ft ³ excavated	ft ³ excavated volume needed					
Structure	Length	Width*	Depth*	*For pipe, use the square			
Ratios	25.00	2.00	2.00	root of the sectional area			
Dimen. (ft)	55.45	4.44	4.44	_			

10 - YEAR DESIGN STORM				DETENTION @ 15 MIN.	
		10 - Yr.		Detention	Specified
Storm	10 - Year	Release	10 - Year	Rate To	Storage
Duration	Intensity	Qpre	Qpost	Storage	Volume
(min)	(in/hr)	(cfs)	(cfs)	(cfs)	(cf)
1440	0.26	0.034	0.123	-0.113	-12244
1200	0.28	0.037	0.133	-0.104	-9315
960	0.31	0.041	0.146	-0.090	-6504
720	0.34	0.046	0.165	-0.071	-3857
480	0.41	0.054	0.196	-0.041	-1459
360	0.46	0.061	0.221	-0.015	-409
240	0.55	0.073	0.262	0.026	473
180	0.62	0.082	0.297	0.060	815
120	0.74	0.098	0.352	0.116	1044
90	0.83	0.111	0.398	0.162	1091
60	0.99	0.131	0.472	0.236	1063
45	1.12	0.148	0.534	0.298	1004
30	1.33	0.176	0.634	0.398	895
20	1.57	0.209	0.753	0.516	775
15	1.78	0.236	0.850	0.614	691
10	2.11	0.280	1.010	0.774	580
5	2.83	0.376	1.355	1.118	419

Notes & Limitations on Use:

- The modified rational method, and therefore the standard calculations are applicable in watersheds up to 20 acres in size.
- 2) Required detention volume determinations shall be based on all net new impervious areas, both on and off-site, resulting from the proposed project. Pervious areas shall not be included in detention volume sizing; an exception may be made for incidental pervious areas less than 10% of the total area.
- Gravel packed detention chambers shall specify on the plans, aggregate that is washed, angular, and uniformly graded (of single size), assuring void space not less than 35%.
- 4) A map showing boundaries of both regulated impervious areas and actual drainage areas routed to the hydraulic control structure of the detention facility is to be provided, clearly distinguishing between the two areas, and noting the square footage.
- 5) The EPA defines a class V injection well as any bored, drilled, or driven shaft, or dug hole that is deeper than its widest surface dimension, or an improved sinkhole, or a subsurface fluid distribution system. Such storm water drainage wells are "authorized by rule". For more information on these rules, contact the EPA. A web site link is provided from the County DPW Stormwater Management web page.
- 6) Refer to the County of Santa Cruz Design Criteria, for complete method criteria.

This method is available from the County Public Works web site in a computerized Excel spreadsheet format to simplify usage. http://www.dpw.co.santa-cruz.ca.us/drainage.htm

The spreadsheet formulas and format are copy protected to prevent alteration.

Any modified submittals may be rejected, unless the changes made and the author are clearly identified, and the format is recognizably different.

Restrictor Description: Orifice @ Chamber Outlet

Project Name: Peace Village
Job Number: 2011.04
Date: March 27, 2023

RESTRICTOR SIZE, ORIFICE METHOD (Circular Opening)

	Value
1. HIGHWATER ELEVATION	277.50
2. INVERT ELEVATION	272.00
3. DIAMETER OF RESTRICTOR IN INCHES	2.00
4. CROSS SECTIONAL AREA, SQ. FT.	0.02
5. HEAD, FT.	5.42
6. DISCHARGE COEFFICIENT	0.50

SQUARE EDGE 0.79 - 0.82
ROUND EDGE 0.93 - 0.98
SHARP EDGE 0.58 - 0.64
PROJECTING 0.50

7. DISCHARGE, Q, CFS	0.204
8. ALLOWABLE RELEASE RATE, Q, CFS	0.236